
Wordless Integer and Floating-Point Computing

Henry Dietz[0000-0002-5878-881X]

University of Kentucky, Lexington KY 40506, USA
hankd@engr.uky.edu

Abstract. In most programming languages, data is organized in structures that
are explicitly mapped to machine words each containing a fixed number of bits.
For example, a C variable declared as an int might be specified to be repre-
sented by a 32-bit word. Given computer hardware in which data are organized
as fixed-size words, this seems intuitive and efficient. However, if the integer is
known to always have a value between 0 and 100, at most only seven of those
32 bits are needed; the other 25 bits are always 0. Programming languages like
C allow integer variables to be declared as having any of several bit precisions,
so declaring the variable as uint8_t could reduce waste to just one bit. The
catch is that the index is really only seven bits long when it holds a value
greater than 63. Operating on more bits than necessary dramatically increases
both the storage space and the number of gate operations needed to perform op-
erations like addition or multiplication. The solution proposed here is to imple-
ment a programming model in which integer and floating-point variables are
represented by just enough bits to represent the values they contain at that mo-
ment in execution. The overhead involved in dynamically adjusting precision is
significant, thus it is only used for SIMD-parallel variables implemented using
the PBP execution model.

Keywords: Parallel Bit Pattern computing, SIMD, bit slice, bit-serial arith-
metic, variable precision arithmetic, integer arithmetic, floating point.

1 Introduction

Through decades of exponential growth in the number of gates that can be cost-effec-
tively put on a chip, the best way to make programs execute faster was to use increas -
ing amounts of parallelism. Unfortunately, the happy prophecy of Moore’s Law is no
longer being met; as the rate of increase is decaying, it has become prudent to seek
ways to increase compute power without using more hardware parallelism. This con-
cern is amplified by the fact that power consumed per gate action has not been drop-
ping even as fast as the number of gates that can be placed on a chip has grown. There
are many ways that the power consumed per computation might be reduced, ranging
from adiabatic logic to quantum computing, but one of the most immediately practical
methods is to simply avoid performing gate-level operations that do not produce a
useful result.

2

One of the most fundamental concepts in optimizing compilers is the elimination
of unnecessary operations. Optimizations like common subexpression elimination,
which removes repeated computations of the same value, were well known by
1970[1] and are implemented in nearly all modern compilers. These optimizations are
quite effective in reducing the amount of work that must be performed to execute a
program, but they generally are performed at the level of operations on values sized as
machine words. In a 2017 paper[2], it was suggested that the key to dramatically re-
ducing power consumed per computation is to instead focus on performing similar
optimizations at the level of individual gate operations on bits. The methods recom-
mended for minimizing the number of active gates in performing a word-level com-
putation can be broadly divided into two categories: minimizing the number of bits
that must be processed and minimizing the number of gate-level operations that must
be executed for a given bit-level computation.

1.1 Minimizing The Number Of Bits

Several techniques have been suggested toward minimizing the number of bits that
must be stored and processed for each value. The most obvious is that choices be-
tween data types should be made more carefully; although C/C++ programs com-
monly declare most integer variables as int, variables that do not need that large a
value range, or that are never negative, should be declared using types that instantiate
fewer bits, such as uint8_t. This type of transformation also can be automated by
the compiler performing integer range analysis. In fact, the concept of using compile-
time range analysis to infer variable types dates from the mid-1960s[3]. The 2017
work also suggested that precision of floating-point values should be a function of the
accuracy required for the result, and that accuracy requirements for operations should
be specified rather than precision of variables. It was noted that such accuracy re-
quirements would even allow dynamic choices between float and double representa-
tions, or even the use of alternative approximate real-number formats such as LNS
(log number systems). Finally, it was noted that smaller representations can be packed
to hold more values in a fixed number of memory locations or registers, thus reducing
the power associated with storing or transmitting each useful bit.

In the current work, the approach taken is to be able to treat any integer or floating-
point variable as inherently variable precision, with the number of bits dynamically
varying as the value is changed. Excess bits are dynamically trimmed as new values
are generated. Even the signedness of an integer is treated as a dynamic property of
the current value. For example, a variable with the value 4 would be represented as an
unsigned 3-bit integer, and decrementing it to 3 would change the type to unsigned 2-
bit integer. If that value of 3 was then negated, the type of that variable would change
to signed 3-bit integer. Operations on integer values thus effectively eliminate redun-
dant bit positions from the most significant bit (MSB) position downward. In effect,
the normalization of ordinary floating-point values similarly removes redundant bit
values from the MSB downward. It is possible to extend this notion further so that,
using a different normalization rule, redundant bits are also removed from the least

3

significant bit (LSB) upward. For example, while the fractional part of the representa-
tion of the floating-point value 3.0 would require two bits, the fractional part of 256.0
can be just a single bit long. The exponent also can dynamically change in size. These
methods are discussed in Section 2.

1.2 Minimizing The Number Of Gate-Level Operations

Minimizing the number of gate-level operations that must be executed for a given bit-
level computation seems impossible for computers that inherently operate on a ma-
chine word at a time. However, it was noted that bit-slice hardware, in which word-
level operations were literally performed one bit at a time, was once extremely com-
mon – and perhaps it is time to revive that model. Bit-serial processing of values was
particularly common in SIMD supercomputers, and was used in the ICL Distributed
Array Processor (DAP)[4], STARAN[5], Goodyear Massively Parallel Processor
(MPP)[6], Thinking Machines CM and CM2[7], and NCR GAPP[8]. The key benefit
in using SIMD-parallel execution of bit-serial operations is that it allowed simpler
hardware to execute with a faster clock. For example, a throughput of one 32-bit addi-
tion per clock cycle can either be obtained by having a fast 32-bit addition circuit per-
form one addition in one clock cycle or by executing one-bit ripple-carry addition
steps in a sequence of 32 clock cycles, but with a parallelism width of 32. Bit serial
addition of 32 32-bit values in 32 clock cycles requires only 32 one-bit full adders, for
a total of approximately 5×32 gates, yielding 32 results after a total of roughly
5×32×32=5120 gate actions. In contrast, a single fast 32-bit adder built using carry
lookahead will require at least twice as many gates, doubling the number of gate ac-
tions and hence power consumed for computing the same 32 results; each clock cycle
also will be at least an order of magnitude longer, because the longest path through
the 32-bit carry lookahead is more than ten times the delay of a one-bit full adder. The
bit-serial SIMD machines leveraged this benefit, but generally used a fixed, mi-
crocoded, sequence of bit-level operations for each word-level operation; by optimiz-
ing at the bit level across multiple word-level operations, as well as performing con-
stant folding where bit values are known, the number of bit-level gate operations can
be reduced even more dramatically. It also was suggested that such analysis could tar-
get implementation using a quantum computer, potentially leveraging the ability of
such systems to have a individual gate-level operation applied to exponentially many
superposed bit values with unit cost.

The approach discussed in the current work is perhaps best described as a layered
application of symbolic execution. In the top layer, each operation on a dynamic-pre-
cision variable can be translated into the simplest possible equivalent set of bit-level
operations, and the bookkeeping necessary to adjust precision is performed. This sym-
bolic manipulation is relatively expensive, so it generally is not used for scalar vari-
ables. Variables that are massively-parallel SIMD data structures multiply the opera-
tion cost without incurring additional bookkeeping, so the benefit in performing the
symbolic manipulation can far outweigh the overhead. The layers below that are logi-
cally performing SIMD-parallel operations on huge bit vectors distributed across sin-

4

gle-bit processing elements. However, the implementation actually recognizes and re-
moves redundancies in four lower layers leveraging the new, quantum-inspired, paral-
lel bit pattern (PBP)[9] model of computation. In PBP, the value of an E-way entan-
gled superposition is represented as a SIMD-parallel 2E-bit value, and the current
work treats it as precisely that: a collective reference to corresponding bits in 2E

SIMD processing elements (PEs). The dynamically-optimized execution of the bit-
level SIMD operations is detailed in Section 3.

Section 4 summarizes a few preliminary performance results obtained by executing
a prototype C++ implementation on a conventional processor using only SIMD hard-
ware parallelism within a 32-bit or 64-bit word. Although use of a conventional pro-
cessor prevents the power savings from being realized, the system does allow precise
counting of gate-level operations needed for conventional word-level SIMD execu-
tion, bit-level optimized SIMD execution, and the execution of bit-level SIMD opera-
tions using PBP entangled superpositions.

The contributions of this work are summarized in Section 5, along with directions
for future work.

2 Wordless Integer And Floating-Point Variables

The primary contribution of the current work is the concept and implementation of an
efficient mechanism for wordless variables: variables for which the number of bits
used to represent a value dynamically is adjusted at runtime to minimally cover the
specific values being represented.

Although there are languages in which arbitrary numbers of bits may be used to
represent a variable, such as Verilog[10] and VHDL[11], bit precision generally is
fixed at compile time. This is not surprising in that most such languages are intended
to be used to specify hardware designs, and bit precision thus corresponds to the phys-
ical number of wires in a datapath. In allowing runtime adjustable precision for a vari-
able, the most similar prior work is not minimizing the number of bits in a representa -
tion, but facilitating computations upon multi-word “Big Numbers.” There are many
libraries providing variable-length multi-word value manipulation, including The
GNU Multiple Precision Arithmetic Library (GMP)[12], BigDigits[13], and
ArPALib[14]. Such libraries often use extremely clever implementations of opera-
tions in order to improve speed when operating on high-precision values; for example,
multiply is often implemented by algorithms other than the usual shift-and-add se-
quence. In contrast, most values used in programs fit within an individual machine
word with space to spare, and none of the above libraries attempts to avoid storing or
operating on those unnecessary bits within a word.

5

2.1 Wordless Integers

In most computers, an unsigned integer is represented as an ordered set of k bits, bk-1,
bk-2, …, b1, b0, such that the value of bit bi is bi×2i. That is essentially the representa-
tion proposed here. The main difference is that the value of a bit position b i is not a
single bit, but an entire vector of bits distributed one per PE across the nproc PEs of a
SIMD machine. Thus, rather than representing an integer as an ordered set of bits, it
would be more accurate to say an integer is an ordered set of bit-index values, xi, such
that the corresponding bit value in each PE iproc is PE[iproc].mem[xi]. The value of
k, the number of bits in the representation, is variable and therefore must be recorded
as part of the integer data structure.

Removal Of Redundant Leading Bits. An unsigned integer’s value is not affected
by any bit position holding zero. Thus, it would be possible to record only the posi-
tions of potentially non-zero bit values: that is, only values of xi such that there exists
at least one PE iproc where PE[iproc].mem[xi]≠0. In practice, unsigned integer val-
ues close to zero are used much more frequently than larger values, thus the probabil-
ity of a potentially non-zero bit value in position i dramatically decreases as i in-
creases. This suggests that general-purpose methods for encoding sparse data are not
needed; it is typically sufficient to truncate any leading bit positions that are zero and
keep a count of the number of bit positions retained.

Signed integers, represented as 2’s-complement values, present a significantly
different encoding problem. Leading zero bits still have no effect on the value be-
cause, in effect, a positive value represented in 2’s-complement uses the exact same
encoding as that value would have as an unsigned quantity. However, negative values
essentially treat leading bits in the inverted sense: leading one bits have no effect on
the value of a negative number. In other words, the usual gate-level description of
sign extension, converting a signed integer value to a larger number of bits, involves
filling the additional leading bits with copies of the originally most significant bit.
Thus, to reduce the number of bits in a signed integer while maintaining the value,
one repeatedly removes the most significant bit, bk-1, until either bk-1≠bk-2 or k=1.
However, if the value is positive, this bit-removal process will stop with one more bit
in the representation than the same value would have if considered unsigned. For ex-
ample, the value 3 as an 8-bit signed integer is 00000011, and as an unsigned inte-
ger it can be reduced to 11, but as a signed integer the simplest representation would
be 011 because 11 would be interpreted as the value -1.

At this point it is useful to recall that a bit position does not hold just one bit in our
system, but a vector of bit values spread across the SIMD PEs. Thus, the leading bits
do not need to be all zero across the machine nor all one in order for precision to be
reduced. Consider a 2 PE system representing the 8-bit value 00000011 (3) in PE 0
and the value 11111011 (-5) in PE 1. Across the machine, the bit-level representa-

6

tion could be summarized as {{0,1}, {0,1}, {0,1}, {0,1}, {0,1}, {0,0}, {1,1},
{1,1}}. The rule is simply that as long as the same ordered set of bit values that oc -
curs in the most significant position is repeated below it, the leading bit position may
be removed. Thus, the bit-level representation here reduces to {{0,1}, {0,0}, {1,1},
{1,1}}. In classical SIMD terminology, the most significant bit, bk-1, can be removed
iff PE[iproc].mem[xk-1]=PE[iproc].mem[xk-2] for all PEs, which would seem to re-
quire a comparison operation within each PE followed by an ALL reduction.

The apparent complexity of this precision minimization is, however, misleading.
Using the PBP model for our SIMD execution, each of the bit vectors stored across
the SIMD PEs is implemented by a pbit (pattern bit)[9]. Each pbit value is identified
by a pattern register number, essentially the xi value described above. However, these
pbit values are assigned register numbers based on uniqueness: whenever a pbit value
is created, it is hashed to determine if that same pbit value has appeared before. If it
has, the system ensures that the same register number is used to identify the result;
otherwise, it allocates a new register number for the result. Thus, the comparison
PE[iproc].mem[xk-1]=PE[iproc].mem[xk-2] for ALL PEs is implementable as simply xk-

1=xk-2, and the actual bit vectors are never accessed. Once completing that minimiza-
tion, if the most significant remaining bit of a signed integer references the register
that holds all zeros, then all values are positive, and the value can be treated as un-
signed with that leading zero bit removed.

As a result, the data structure used to represent a variable-precision integer, hence-
forth called a pint (pattern integer), is:

bool has_sign; // has a sign bit?
uint8_t prec; // current number of active pbits
pbit bit[PINTBITS]; // pbit register numbers

2.2 Manipulation Of Integer Values

It would be valid to consider a pint to have a “normal form” that is minimized as de-
scribed above. However, given that two different pint values may have different pre-
cisions, and perhaps even different signedness, there are a few library-internal rou-
tines needed to manipulate these properties so word-like operations can deal with ar-
guments consistently.

Minimize. The pint Minimize() const; operation simply returns the normal-
form version of a pint value. This is done at the end of every library operation that
might otherwise result in an unnormalized result.

Extend. The pint pint Extend(const int p) const; operation returns the
“denormalized” version of a pint value with exactly p pbit precision. This may be
used to add extra leading bits or to truncate a value by clipping leading pbits. Note

7

that, in an implementation using lazy evaluation, clipping leading pbits could cause
the entire computations that would have created those pbits to be removed.

Promote. The pint pint Promote(const pint& b) const; operation re-
turns the unnormalized version of a pint value promoted to the smallest precision and
signedness that can represent both its value and the value b. For example, this opera-
tion is a necessary precursor to bitwise operations like AND, OR, and XOR.

2.3 Wordless Floating Point

The IEEE standard for floating-point arithmetic defines the internal structure of a
word to be used to represent the approximate value of a real number, as well as vari -
ous accuracy and other constraints on operations.

IEEE 754[15] specifies that a single-precision floating-point value, a float, is
packed into a 32-bit word. The most significant bit is the sign of the fraction, 0 for
zero or positive, 1 for negative. The 23 least-significant bits are the magnitude of the
fractional part of the value, with an implicit 24th bit which is treated as a leading one
for normalized values. The remaining eight bits are the exponent, which is a power-
of-two multiplier for the fractional part. The exponent is encoded as a 2’s-comple-
ment integer, but a bias of 128 is added so that the minimum value presents as 0
rather than -128.

There are many details that are specified by the IEEE standard. For example, zero
is not representable as a normalized number because normalization specifies that the
(not stored) most significant bit of the fractional part is a 1. Values with the minimum
allowed exponent are treated specially – as denormals, in which the implicit most sig-
nificant bit of the fraction is essentially ignored and normalization is not performed.
For example, this allows representing zero as a fractional part that is 0 and an expo-
nent that is the minimum value; conveniently making float zero have the same bit-
level representation as the 32-bit integer value zero. Similarly, the fact that the expo-
nent bits reside above the fraction bits means that floating-point comparisons for less
than and greater than can use the same logic employed for integer comparisons to
compare the absolute values of floats. The IEEE standard also provides for direct rep-
resentation of +/- infinity and NaN (not-a-number) values, and further specifies
rounding modes and accuracy requirements for operations.

The wordless floating-point representation for a pfloat is based loosely on the
IEEE specification, but differs in a variety of important ways. A single pfloat value
represents not just one float value, but one float value per virtual SIMD processing el-
ement. The component fields within a pfloat are functionally much like the sign, ex-
ponent, and mantissa components of an IEEE float but, as is described below, they are
represented and manipulated somewhat differently. Similarly, the normal form for a
pfloat, and normalization algorithm, is quite different from that of an IEEE float.

8

Sign. The pfloat representation of the value sign uses a pint that contains a single pbit.
That pbit normally has the exact same meaning as the sign bit in the IEEE standard
format: 1 is negative and 0 is non-negative (positive or zero). However, because a
pfloat value of 0 is always given a 0 sign bit, the encoding that would represent -0 is
instead available for other use, such as representation of NaN.

Exponent. The exponent is stored as a pint specifying a power-of-two multiplier.
This differs from the standard in that IEEE 754 uses the minimum possible exponent
value to indicate that the value is a denormal, and further requires adding a bias factor
to make the minimum exponent value be stored as a field full of 0s.

There would be no significant benefit in adding a bias to the pfloat exponent pint
value. There also is no well-defined minimum possible exponent value for a pfloat be-
cause the pint exponent field has runtime-variable precision; thus, picking a bias value
would artificially impose a minimum bound on the exponent value. It is important to
remember that a single pfloat can represent an exponential number of float values, so
the overhead of maintaining a scalar variable holding the current precision of the ex-
ponent is negligible in comparison to the amount of float data being represented.

There are two motivations for denormals in the IEEE standard. The first is the need
to be able to represent the value zero, which is literally impossible to represent as a
normal value – and a pfloat cannot circumvent this issue. The second motivation is to
allow values between the smallest representable normal number and zero. Without de-
normals, the difference between the second smallest and smallest normal values
would be much less than the difference between the smallest normal value and zero.
However, non-zero denormal values could be represented as normals if the exponent
field had a larger range. The variable precision of the pint exponent field of a pfloat
means that expanding the exponent range naturally occurs as needed – and the num-
ber of pbits used to represent the exponent is not artificially increased to cover repre-
sentation of a fixed minimum value. Thus, the only ordinary pfloat value that is de-
normal is zero.

Mantissa. In the IEEE standard, the exponent value distinguishes between normal
and denormal values, and the mantissa of a normal number has an implicit leading 1
bit, whereas a denormal has an implicit leading 0. In effect, the implicit leading bit is
the value of (exponent!=minimum), a test that is nonsensical for a pfloat because there
is no fixed minimum exponent value. Instead, the single denormal value, zero, is rep-
resented by the mantissa pint having the value 0. This implies that the exponent field
is essentially meaningless when the mantissa is 0. The smallest pint representation oc-
curs for the values 0, 1, or -1 all of which are representable using a single pbit. Giving
the value zero an exponent of 0 seems the obvious choice. We further suggest that a
mantissa of zero with an exponent of 1 represent infinity. Thus, NaN, zero, infinity,
and negative infinity – all values distinguished by having the mantissa field be zero –
are not subject to normalization. These pfloat values not subject to normalization are

9

given in Table 1; each is represented using only 3 pbits because the normal pint han-
dling removes leading 0 pbits.

Table 1. The pfloat value representations not subject to normalization.

Decimal Value Sign Exponent Mantissa (8 bit precision)

0.0 0 0 0

NaN 1 0 0

Infinity 0 1 0

Negative Infinity 1 1 0

Normalization. A normal form for floating-point numbers provides a unique repre-
sentation for each possible value. Without normalization, each number would have
many different representations thus wasting multiple bit patterns on encoding a single
value, just as the decimal float value 42.0×100 is equivalent to 4.2×101 and also
420.0×10-1. For an IEEE float, the normal form places the most-significant non-zero
bit in the mantissa one bit to the left of the mantissa bits stored. That bit value does
not need physical storage because 1 is the only non-zero bit value. However, for a
pfloat, the mantissa can be variable size, so which pbit position would correspond to
the most-significant bit position? There are two choices; one obvious, the other not.

The obvious normal form is derived by modeling the normal form used by tradi-
tional float values. Rather than letting the mantissa of a pfloat vary in size completely
dynamically, suppose that a particular mantissa precision is selected. Normalization
can be performed by simply adjusting the pfloat so that the most significant bit of the
mantissa is 1 for all the values within that pfloat. Table 2 gives some examples of the
number of pbits used to encode various decimal values.

Table 2. Some pfloat value representations, MSB normalized.

Decimal Value Sign Exponent Mantissa (8 bit precision)

1.0 0 0 10000000

2.0 0 1 10000000

5.0 0 10 10100000

0.5 0 -1 10000000

-42.0 1 101 10101000

This type of floating-point normalization was often implemented by an expensive
process in bitwise SIMD computers: one-bit-position-at-a-time disabling of proces-
sors with values already in normal form, shifting the selected mantissas one bit posi-
tion, and decrementing their exponents. However, bitwise normalization can be per-
formed in log(precision) steps. For example, with 8-bit mantissa precision, the checks
would be for top 4 bits all 0, then top 2 bits, and finally top bit, completing in just
three steps rather than eight. The problem with this relatively conventional MSB nor-

10

malization is that the pint mantissa fields naturally trim leading zeros, but not trailing
zeros. Thus, the number of apparently active bits can be somewhat inflated.

The less obvious option would be to normalize values not based on the position of
their most-significant 1 bit, but based on the position of their least-significant 1 bit.
Clearly, normalizing so that the least-significant 1 bit is in the least significant bit po-
sition is stripping trailing 0 bits, and combining that with the stripping of leading 0
bits inherently done by pint processing should result in the shortest possible mantis-
sas. This can be seen in Table 3, which shows that the same values given in Table 2
with MSB normalization become significantly shorter with LSB normalization. How-
ever, LSB normalization increases overhead in operations like addition and tends to
increase entropy, so the current system defaults to MSB normalization.

Table 3. Some pfloat value representations, LSB normalized.

Decimal Value Sign Exponent Mantissa (8 bit maximum precision)

1.0 0 0 1

2.0 0 1 1

11.0 0 0 1011

0.5 0 -1 1

-42.0 1 1 10101

3 Runtime Optimizations

The key concept being leveraged in the current work is that the new Parallel Bit Pat-
tern (PBP) computing model, which was inspired by quantum computing, also can be
treated as an extremely efficient model for massively-parallel bit-serial SIMD compu-
tation. Instead of viewing the PBP implementation of an E-way entangled superposi-
tion as a quantum-like phenomenon, the current work treats it as 2E virtual bit-serial
SIMD processing elements (PEs): i.e., nproc is 2E and iproc values range from 0 to
2E-1. This enables two classes of work-reducing optimizations: compiler-like opti-
mizations performed at the bit level at runtime and optimizations based on recogniz-
ing value patterns across groups of PEs.

3.1 Compiler-Like Optimization At Runtime

Compiler optimizations such as constant folding, recognition of algebraic simplifica-
tions, and common subexpression elimination are normally applied to word-level ex-
pressions at compile time. However, by applying these transformations to symbolic
descriptions of massively-parallel bit-level operations, the number of actual mas-
sively-parallel bit-level operations that must be performed can be dramatically re-
duced.

11

In a traditional bit-serial SIMD computer, each gate-level operation would cause
each processing element to produce a single-bit result in its own local memory or reg-
ister file, and fixed gate-level sequences would be used to implement each word-level
operation. For example, adding 4 to a 32-bit variable in each PE would typically in-
voke the standard 32-bit ripple-carry add sequence rather than taking advantage of the
fact that adding 4 can be accomplished by a ripple-carry 30-bit increment sequence
applied to the top 30 bits of the variable. In contrast, if the current value of that poten-
tially 32-bit variable in each PE fit in just 12 bits, the methods used here would essen-
tially recognize both that fact and the fact that adding 4 is equivalent to incrementing
starting at bit position 2. Thus, the gate-level operation sequence used would be
equivalent to a 10-bit ripple-carry incrementer – a much cheaper sequence in both ex-
ecution time and total energy expended for the computation.

The recognition of such redundancies lies primarily in the concept of a pbit. A pbit
logically represents a vector of nproc bits, but is actually a descriptor with the inter-
esting property that any two equivalent bit vectors will always have the same descrip-
tor value. This allows the system to dramatically reduce storage space by keeping
only a single copy of each unique bit pattern, but also implies that comparing for
equality is accomplished by simply comparing descriptors, and never requires exam-
ining the actual bits. As each pfloat or pint operation is lowered to pbit operations, the
lowering is done by calling a function that not only is parameterized by the current
precisions of the operands, but also applies standard compiler optimizations rather
than simply generating a fixed sequence of operations.

Constant folding. At the bit level, there are only two constants: 0 and 1. In the cur-
rent PBP implementation, these are represented by pbit descriptors with the corre-
sponding values, 0 for a vector of all 0s and 1 for a vector of all 1s. When any gate-
level operation on a pbit value is requested, the descriptors are first checked, and
where all operands are constants the gate result is computed by literally performing
the operation on the descriptors. For example, OR of descriptor 0 and descriptor 1
produces a result which is simply 0 OR 1 ⇒ descriptor 1, without accessing any actual
bit vector.

Algebraic simplifications. Because the mapping between bit vector values and de-
scriptors is 1:1 and onto, a wide range of algebraic optimizations can be applied with-
out accessing any actual bit vector. For example, pbit 601 AND pbit 601 yields pbit
601. Similarly, pbit 601 AND pbit 1 yields pbit 601 and pbit 601 AND pbit 0 yields
pbit 0.

Common subexpression elimination. The key bookkeeping problem in recognizing
common subexpressions is the mapping to a “single assignment” form, but the pbit
descriptors already have that property. Thus, if pbit 42 XOR pbit 601 was found to
produce pbit 22, pbit 42 XOR pbit 601 will always produce pbit 22, and the operation
does not need to be repeated.

12

Applying these symbolic compiler optimizations at runtime implies significant
overhead, but that overhead is independent of the value of nproc. Thus, as nproc is in-
creased, the overhead quickly becomes negligible.

3.2 Optimizations Using Pattern Recognition Across PEs

Although classical SIMD models have the concept of values being spread across PEs,
most do not provide a means for describing patterns across PEs. In contrast, using the
new PBP model to implement bit-serial SIMD computations provides several layers
of mechanisms for describing value patterns across PEs, and these can be used to dra-
matically increase the number of gate-level operations that can be recognized as re-
dundant and avoided.

If the number of SIMD PEs is virtualized so that it may be different from the num-
ber of physical PEs, larger numbers of virtual PEs are classically simulated by multi-
ple passes and excess physical PEs are disabled. For example, if there are 1024 physi-
cal PEs and 10000 virtual PEs are requested, each gate-level operation would be re-
peated 10 times and, in the last round, the last 240 physical PEs would be disabled.
The hierarchical SIMD-like execution model employed by GPUs improves upon the
classical virtualized SIMD model by fragmenting the PEs into SIMT warps[16], typi-
cally of 32 PEs each, which allows skipping execution of an entire warp if all the vir -
tual PEs it contains are disabled. Continuing the example, those last 240 virtual PEs
occupy the last 7.5 warps; thus, a GPU would skip the last 7 warps entirely and apply
enable masking only for the half-enabled warp. The PBP model also fragments each
2E-bit entangled superposition into smaller chunks, but allows use of far more sophis-
ticated logic to determine when chunk computations can be skipped.

In the PBP model, the layer below pbit is RE, a layer in which each vector of bits is
represented by a regular expression that would generate the bit vector. The regular ex-
pressions are not patterns of bits per se, but patterns of “chunks” that roughly corre-
spond to the concept of warps in GPUs. Like pbits, both REs and chunks implement
1:1 and onto mappings between bit vectors and descriptors, and only a single copy of
each unique chunk bit vector is stored. Thus, the same compiler optimizations that
were discussed for pbit operations also can be applied for chunks. For example, in the
current PBP system, there is an AC layer between REs and chunks that performs ap-
plicative caching – essentially implementing common subexpression elimination on
chunks.

To appreciate the value of this chunk handling, it is useful to consider a simple ex-
ample. For the example, suppose that the chunk size is (the ridiculously tiny) 8 bits
and nproc is 32. As bit vectors with the PE0 bit in the rightmost position, in order of
LSB to MSB, the value of iproc would look like:

13

10101010 10101010 10101010 10101010
11001100 11001100 11001100 11001100
11110000 11110000 11110000 11110000
11111111 00000000 11111111 00000000
11111111 11111111 00000000 00000000

However, the actual chunk pattern is:

chunk(2) chunk(2) chunk(2) chunk(2)
chunk(3) chunk(3) chunk(3) chunk(3)
chunk(4) chunk(4) chunk(4) chunk(4)
chunk(1) chunk(0) chunk(1) chunk(0)
chunk(1) chunk(1) chunk(0) chunk(0)

Thus, the total storage used for the above vectors is just 5 chunks, or 5×8=40 bits,
not 5×32=160 bits. Low entropy of values across SIMD PEs is very common. Con-
sider adding 1 to each value (incrementing each 5-bit value to produce a 6-bit result).
The chunk pattern for 1 is:

chunk(1) chunk(1) chunk(1) chunk(1)

The LSB of the result should be four copies of chunk(1)^chunk(2), which we
will call chunk(5), and the computation is performed once to produce the new bit
vector chunk. The next three chunk operations would all be hits in the applicative
cache. However, the RE layer does not necessarily need to even check the AC for this
factoring, because it could represent the LSB as chunk(2)4 and 1 as chunk(1)4,
thus directly recognizing that there are three copies of the result from the first chunk
operation.

In summary, whereas GPUs can improve performance over classical SIMD by
skipping disabled warps, using the PBP model for bit-serial SIMD execution allows
much more generalized skipping of chunk computations – as well as skipping of “dis-
abled” chunks. It also has the significant benefit of potentially dramatically reducing
storage space. However, the storage space reduction is somewhat compromised in the
current system by the fact that once a unique chunk value has been created, the cur-
rent system never deallocates it. A garbage collection scheme would be needed to pre-
vent continuous growth of memory use over long sequences of computations.

4 Implementation And Performance

The current PBP library for bit-serial SIMD computation is implemented as 3,644
lines of portable C++ source code. It supports pfloat and pint classes with a wide
variety of primitive operations and currently runs on a single processor core using bit-
wise parallelism within either 32-bit or 64-bit words. This is much narrower than the
desired hardware parallelism width, and also makes power savings unmeasurable, but
hardware directly implementing PBP execution[9] is not yet available. The chunk size

14

for the library may be any power of 2 no smaller than the host word size, and the
maximum supported nproc is 4294967296.

For the pint class, operations include: conversion to/from C++ int, reading
from and writing to a variable in a selected PE; scatter and gather; initialization to a
range of values; logical NOT, AND, OR, and XOR; bitwise NOT, AND, OR, and
XOR; comparisons for EQ, NE, GT, LT, GE, and LE; shift right and left; negation,
absolute value, addition, subtraction, multiplication, division, and remainder; SIMD
ANY and ALL reductions; reductions and scans (parallel prefix) for AND, OR, XOR,
addition, multiplication, minimum, and maximum; and sort to increasing or decreas-
ing order. Where appropriate, the C++ operators have been overloaded so that pint
behaves like a built-in type.

The pfloat class implements most of the same operations implemented for
pint, but not bitwise logic nor remainder. In addition, it implements reciprocal, ex-
ponentiation, logarithm, square root, sine, cosine, tangent, and arctangent. The maxi-
mum settable precision for a mantissa is 32 bits, although some operations work cor-
rectly only for 16 or fewer mantissa bits. The exponent dynamically sizes, and can be
as large as 32 bits. C++ operators also have been overloaded for pfloat.

At this writing, we have not yet run any significant applications, but have bench-
marked several simple programs and the pint library validation suite. Given that the
PBP code is only using a hardware parallelism width of 32 or 64, one would expect
that the bookkeeping overhead would make SIMD code run slower than optimized se-
quential code on the same processor. However, even for simple programs executed
with modest nproc values, the PBP run times were within a factor of 2-3× faster or
slower than the optimized sequential code. For the pint library validation suite, one
would expect poorer performance than from most application codes due to the higher
entropy associated with testing all the different library routines. In order to better un-
derstand the performance, the PBP library was augmented with various performance
counters and the validation suite was run ten times, each with freshly created random
data, for each of 8 sets of parameters.

Table 4. Active gate counts for 32-bit word operations vs. proposed PBP model.

nproc Chunk bits Gates (Words) Gates (PBP) Ratio

65536 256 12279113318 3209523 3826:1

262144 256 55522282700 3141452 17674:1

262144 512 55520002048 6563379 8459:1

1048576 256 252845228032 3135360 80643:1

1048576 1024 252876370739 13902438 18189:1

4194304 2048 1154496017203 29179904 39565:1

16777216 4096 5277432676352 61104947 86366:1

67108864 8192 24153849174425 128459571 188027:1

15

The measured performance of the validation suite is summarized in Table 4. The
first column gives the number of virtual PEs (nproc) used and the second column
specifies how many bits were in each chunk, which is essentially giving the equiva-
lent of the warp size in GPU terminology. The validation suite creates random data
scaled in proportion to the number of bits in a chunk, thus entropy of the test data in -
creases with larger chunk sizes, whereas increasing nproc multiplies the total amount
of work to be done, but has no direct effect on entropy of the test data. The two
“Gates” columns respectively show the average total number of active gate operations
that were needed to perform the validation suite’s computations. The “Gates (Words)”
column measures the number of gate actions assuming that each pint was treated as
typical older bit-serial SIMD systems commonly did, using a fixed gate sequence to
handle each value as if it were holding up to 32 bits; it should be noted that this is still
a far lower number of gate actions than would be counted using non-bit-serial hard-
ware because, for example, it assumes addition is done by ripple carry rather than by a
much more complex circuit (e.g., implementing carry lookahead) as is commonly
used in word-oriented arithmetic. As can be seen from the “Gates (PBP)” column
numbers, the method proposed in this paper dramatically reduces the number of gate
actions used to perform the exact same computation. The rather surprising ratios are
given in the final column, making it obvious that the savings from operating only on
active bits and performing various bit-level optimizations at runtime can be far more
than the 32:1 best case that one might have expected.

5 Conclusion

The current work has introduced and explored the concept of wordless integer and
floating-point computation, in which precision varies dynamically and aggressive
symbolic bit-level optimizations are performed at runtime – all with the goal of mini-
mizing the total number of gate actions needed to perform each computation. The
high overhead of precision bookkeeping is managed by applying these types only to
massively-parallel data structures being operated upon in a SIMD fashion. The quan-
tum-inspired PBP model is shown to have the potential to be a dramatically more effi-
cient virtualized SIMD execution model by combining this bit-level optimization with
the ability to skip chunks of SIMD computation not only if all PEs were disabled for
the chunk, but also if equivalent computations had been performed by any PEs before.
The preliminary results shown here suggest 4-6 orders of magnitude reduction in gate
actions per computation is feasible.

This work is still at an early stage, largely because neither PBP hardware nor bit-
serial SIMD computers is readily available, but the portable C++ library implementa-
tion will soon be released as open source. Beyond that, the highest priority is resolv-
ing the issue of how to garbage collect chunks that are no longer needed.

16

References

1 Cocke, J., Schwartz, J. T.: Programming Languages and Their Compilers, Preliminary
Notes, Second Revised Version. Courant Institute of Mathematical Sciences, New York
University (1970)

2 Dietz, H. G.: How Low Can You Go? In: Rauchwerger, L. (ed) Languages and Compilers
for Parallel Computing (LCPC) 2017, LNCS, vol. 11403, pp. 101-108. Springer (2017)
DOI 10.1007/978-3-030-35225-7_8

3 Klerer, M., May, J.: A user oriented programming language. The Computer Journal, vol.
8(2), pp. 103-109 (1965), DOI 10.1093/comjnl/8.2.103

4 Reddaway, S. F.: DAP - a distributed array processor. Proceedings of the 1 st annual sym-
posium on Computer Architecture, ACM Press, 61–65 (1973)

5 Batcher, K. E.: STARAN parallel processor system hardware. National Computer Confer-
ence, pp. 405-410 (1974)

6 Batcher, K.: Design of a Massively Parallel Processor. IEEE Transactions on Computers,
Volume C-29, Issue 9, 836–840, (September 1980)

7 Tucker, L. W. and Robertson, G. G.: Architecture and applications of the Connection Ma-
chine. IEEE Computer, Volume 21, Number 8, 26–38 (August 1988)

8 Morely, R. E. and Sullivan, T. J.: A massively parallel systolic array processor system.
Proceedings of the International Conference on Systolic Arrays, 217–225 (1988)

9 Dietz, H., Eberhart, P., Rule, A.: Basic Operations And Structure Of An FPGA Accelerator
For Parallel Bit Pattern Computation. 2021 International Conference on Rebooting Com-
puting (ICRC), 2021, pp. 129-133, DOI 10.1109/ICRC53822.2021.00029.

10 IEEE 1364-2001, IEEE Standard Verilog Hardware Description Language, https://stan-
dards.ieee.org/ieee/1364/2052/ (2001)

11 IEEE 1076-2019, IEEE Standard for VHDL Language Reference Manual, https://standard-
s.ieee.org/ieee/1076/5179/ (2019)

12 Granlund, T.: GNU MP 6.0 Multiple Precision Arithmetic Library. Samurai Media Lim-
ited, Hong Kong (2015)

13 BigDigits multiple-precision arithmetic source code, https://www.di-mgt.com.au/bigdigit-
s.html , last accessed 2022/8/15

14 Macheta, J., Dąbrowska-Boruch, A., Russek, P., Wiatr, K. (2017). ArPALib: A Big Num-
ber Arithmetic Library for Hardware and Software Implementations. A Case Study for the
Miller-Rabin Primality Test. In: Wong, S., Beck, A., Bertels, K., Carro, L. (eds) Applied
Reconfigurable Computing (ARC) 2017, LNCS, vol 10216, pp. 323-330. Springer (2017)
DOI 10.1007/978-3-319-56258-2_28

15 IEEE 754-2019, IEEE Standard for Floating-Point Arithmetic, https://standards.ieee.org/
ieee/754/6210/ (2019)

16 Lindholm, E., Nickolls, J., Oberman, S., Montrym, J.: NVIDIA Tesla: A Unified Graphics
and Computing Architecture. IEEE Micro vol. 28, issue 2, (2008) DOI 10.1109/
MM.2008.31

https://standards.ieee.org/ieee/1364/2052/
https://standards.ieee.org/ieee/1364/2052/
https://standards.ieee.org/ieee/754/6210/
https://standards.ieee.org/ieee/754/6210/
https://doi-org.ezproxy.uky.edu/10.1007/978-3-319-56258-2_28
https://www.di-mgt.com.au/bigdigits.html
https://www.di-mgt.com.au/bigdigits.html
https://standards.ieee.org/ieee/1076/5179/
https://standards.ieee.org/ieee/1076/5179/

